Sum and Difference Formulas

There exist formulas that can help find the exact values of trigonometric functions without a calculator.

sin (u + v) = sin u cos v + cos u sin v
sin (u – v) = sin u cos v – cos u sin v
cos (u + v) = cos u cos v – sin u sin v
cos (u – v) = cos u cos v + sin u sin v
tan (u + v) = (tan u + tan v)/(1 – tan u tan v)
tan (u – v) = (tan u – tan v)/(1 + tan u tan v)

These formulas can be applied in the evaluation of a trigonometric function:

Find the exact value of sin 75°
sin 75° = sin (30° + 45°)
sin 75° = sin 30° cos 45° + cos 30° sin 45°
sin 75° = (1/2) (rt(2)/2) + (rt(3)/2)(rt(2)/2)
sin 75° = (rt(2) + rt(6))/4

Find the exact value of cos (p/12)
cos (p/12) = cos (/3 – /4)
cos (p/12) = cos (/3) cos (/4) + sin (/3) sin (/4)
cos (p/12) = (1/2) (rt(2)/2) + (rt(3)/2) (rt(2)/2)
cos (p/12) = (rt(2) + rt(6))/4

Also, one can apply the sum and difference formulas in reverse so to speak:

Find the exact value of sin (u – v) so that
cos u = 1/rt(2) where 3/2 < u < 2 and sin v = 3/5 where /2 < v <
cos u = 1/rt(2) and u is in the fourth quadrant. That means that sin u = – 1/rt(2)


sin v = 3/5 and v is in the second quadrant. That means that cos v = – 4/5


If sin (u – v) = sin u cos v – sin v cos u then
sin (u – v) = (– rt(2)/2) (– 4/5) – (3/5) (rt(2)/2)
sin (u – v) = (4 rt(2))/10 – (3 rt(2))/10
sin (u – v) = rt(2)/10


Cofunction Identities


Prove the cofunction identity sin (x – /2) = – cos x
sin (x – /2) = sin x cos (/2) – cos x sin (/2)
sin (x – /2) = sin x (0) – cos x (1)
sin (x – /2) = – cos x
  basics - unit circles - functions - trig equations - identities - double angles - right triangles -
law of sines
- complex numbers - special angles - sum & difference - site help
 


Copyright © 2003. All rights reserved. All content, design, and work by Mark Walker, Benjamin Griffiths, and Kenny Aronson. All unauthorized
use of this aspect is strictly prohibited under maximum penalty of the law. For educational use only.